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Received 21 December 2006; received in revised form 25 November 2007; accepted 10 January 2008
Available online 20 January 2008
Abstract

A stable hybridization of the finite-element method (FEM) and the finite-difference time-domain (FDTD) scheme for
Maxwell’s equations with electric and magnetic losses is presented for two-dimensional problems. The hybrid method com-
bines the flexibility of the FEM with the efficiency of the FDTD scheme and it is based directly on Ampère’s and Faraday’s
law. The electric and magnetic losses can be treated implicitly by the FEM on an unstructured mesh, which allows for local
mesh refinement in order to resolve rapid variations in the material parameters and/or the electromagnetic field. It is also
feasible to handle larger homogeneous regions with losses by the explicit FDTD scheme connected to an implicitly time-
stepped and lossy FEM region. The hybrid method shows second-order convergence for smooth scatterers. The bistatic
radar cross section (RCS) for a circular metal cylinder with a lossy coating converges to the analytical solution and an
accuracy of 2% is achieved for about 20 points per wavelength. The monostatic RCS for an airfoil that features sharp cor-
ners yields a lower order of convergence and it is found to agree well with what can be expected for singular fields at the
sharp corners. A careful convergence study with resolutions from 20 to 140 points per wavelength provides accurate
extrapolated results for this non-trivial test case, which makes it possible to use as a reference problem for scattering codes
that model both electric and magnetic losses.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Radar absorbing materials (RAM) with electric and magnetic losses are important for the reduction of the
radar cross section (RCS) in stealth applications [1]. Optimized designs may involve geometries with sharp
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edges and inhomogeneous materials. Thus, local mesh refinement may be necessary to resolve rapid variations
in the electromagnetic field and/or the material parameters.

Ampère’s law with electric losses modeled by an electric conductivity and Faraday’s law with a magnetic
conductivity that models the magnetic losses can be time-stepped as a system of first order differential equa-
tions. Several electromagnetic field solvers in the time-domain exploit this form of Maxwell’s equations. Taf-
love and Hagness [2] describe a conventional finite-difference time-domain (FDTD) scheme based on leap-frog
time integration, which suffers from the staircase approximation inherent to the FDTD scheme formulated on
structured (Cartesian) grids. Rodrigue and White [3] use hexahedral finite elements for the spatial discretiza-
tion and time step the coupled Maxwell’s equations with a leap-frog scheme, which gives a method that
reduces to the FDTD scheme on rectilinear grids. The algorithm presented by Rodrigue and White [3] does
not allow for unconditionally stable time-stepping and they do not consider tetrahedral meshes that are useful
for local mesh refinement. Rieben, Rodrigue and White also published a similar method [4] that exploits
higher order approximations for the spatial and temporal discretization. Riley and Jin [5] use finite-element
(FE) techniques to discretize with respect to space and they arrive at a wave equation for the electric field that
also involves the magnetic field. They use an explicit update algorithm of leap-frog type to compute the mag-
netic field by means of integration of Faraday’s law. However, the time-stepping scheme used for the updating
of the wave equation is not mentioned or described in their paper. Furthermore, their paper does not provide
any information on the stability properties for their time-domain method.

A combination of the FDTD scheme applied to large homogeneous regions for efficiency and the finite-ele-
ment method (FEM) for regions with complicated geometry and materials is attractive for many scattering
problems. Wu and Itoh proposed FEM–FDTD hybridizations for both two [6] and three [7] dimensions.
These schemes suffer from late-time instabilities that may be damped by temporal filtering [8]. Abenius
et al. [9] combine the FDTD scheme with an implicit FEM and numerical studies indicate that it is stable,
although no formal proof of stability is given. Monorchio et al. [10,11] proposed a hybrid that suffers from
late-time instabilities and some attempts to mitigate this problem involve averaging or extrapolation tech-
niques. Marrone and Mittra describe a way of interfacing triangles [12] and tetrahedrals [13] to FDTD cells
but no explicit Courant criterion is derived. Rylander and Bondeson presented a stable FEM–FDTD hybrids
[14,15] for 3D problems that are stable up to the Courant condition of the FDTD scheme, where convergence
studies [15] and proofs of stability [15,16] are available in the literature. We emphasize that the treatment of
magnetically lossy materials is not considered in any of these articles on hybrid FEM–FDTD algorithms.

There is a broad selection of numerical techniques that are formulated in the frequency domain [17,18],
such as the method of moments (MoM) that may be accelerated by the multi-level fast multipole method
(MLFMM) for electrically large scattering problems. The MoM is particularly efficient for scattering prob-
lems with many different incident angles. However, it provides the response for only one single frequency
in contrast to time-domain field solvers that yield the response in a broad frequency-interval. The MoM
can handle inhomogeneous materials and it may be formulated in the time domain, but such methods are com-
putationally expensive and difficult to program. For problems that feature non-linear media, frequency
domain methods in general and the MoM in particular are inappropriate, if not impossible, to use.

In this paper, we present a stable FEM–FDTD hybrid method for electromagnetic problems in two dimen-
sions that feature complex geometry with materials that have both electric and magnetic losses. In contrast to
what is available in the open literature on the FEM treatment of magnetic losses in combination with electric
losses, our method is distinguished by a number of unique features: (i) an unconditionally stable time-stepping
scheme based on FE techniques and Galerkin’s method applied to the first order system of Ampère’s and Far-
aday’s law; (ii) a proof of stability for this type of implicit FEM; and (iii) a generalization of the stable FEM–
FDTD hybrid [14] for 2D problems that is stable up to the Courant condition of the FDTD scheme. The
unconditionally stable time-stepping scheme that we present in this paper, reduces to a special case of the con-
ventional Newmark scheme [19] when it is applied to problems without magnetic losses. The FE techniques
used to construct the unconditionally stable time-integration scheme offers the possibility to also treat disper-
sive materials [20]. In addition, we demonstrate that it is feasible to use the FEM–FDTD interface in regions
that have both electric and magnetic losses. We would like to stress that the two-dimensional case is important
for the design of wing profiles intended for stealth aircraft, and we will consider the corresponding 3D formu-
lation in a future publication since the 3D Maxwell problem is significantly different from the 2D problem. For
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the hybrid applied to the transverse electric (TE) case, the electric field is expanded in terms of linear edge ele-
ments and the magnetic field by piecewise constants – a construction that is feasible in 2D but yields an incor-
rect formulation for 3D problems since the 3D problem requires that the magnetic flux density is expanded in
terms of divergence conforming elements [3,4,21]. The hybrid applied to the transverse magnetic (TM) case
follows by duality.

We find it advantageous to treat the electric and magnetic losses by the implicitly time-stepped FEM for a
number of reasons: (i) local mesh refinement can be used in the unstructured FEM region to resolve rapid
variations in the electromagnetic field and/or the radar absorber’s material parameters; (ii) the FDTD scheme
is highly efficient for the free-space region; (iii) conventional FDTD techniques [2] such as the perfectly
matched layer, Huygen’s surface and near-to-far-field transformations can be directly applied in the FDTD
region; (iv) it is possible to prove stability for this type of hybrid scheme; (v) the global time step is related
to the highest frequency of interest and the Courant condition specifies an appropriate cell size for the free-
space FDTD region; and (vi) the choice of the global time step does not depend on the cell size in the unstruc-
tured mesh. To summarize, our hybrid method combines the efficiency of the FDTD scheme with the excellent
capabilities of the FEM to model curved boundaries, lossy inhomogeneous materials, rapid field variations
and other challenges that are difficult to handle on structured grids with explicit time-stepping schemes. To
the best of our knowledge, the hybrid algorithm for Maxwell equations with electric and magnetic losses that
we propose has not been published in the open literature and it provides a unique combination of character-
istic features that can not be offered by other existing methods.

2. The hybrid method

The two-dimensional cylinder scatterer typically consists of metal structures that are partially or completely
covered by RAM for the purpose of reducing the RCS. This allows for an outer boundary designed with
respect to e.g. aerodynamical performance. The metal is modeled as a perfect electric conductor (PEC) and
the losses of the RAM by an electric conductivity rE and a corresponding magnetic conductivity rM. The con-
ductivities rE and rM can be functions of the space coordinate and, analogously the permittivity e ¼ e0er and
the permeability l ¼ l0lr can vary with respect to position in the RAM. The electromagnetic field for this sit-
uation satisfies Maxwell’s equations
r�H ¼ rEE þ e
oE

ot
ð1aÞ

r � E ¼ �l
oH

ot
� rMH : ð1bÞ
The FEM–FDTD algorithm for this problem is presented for the TE case and the TM case follows from dual-
ity. It should be emphasized that the FEM–FDTD hybrid allows for both magnetic and electric losses at the
interface between the FEM region and the FDTD region.

2.1. Spatial discretization

The domain X is subdivided by a structured Cartesian grid of rectangles in large homogeneous regions and
an unstructured mesh of triangles in the vicinity of curved boundaries, where the boundary of X is denoted C.
At the interface that connects the structured and unstructured discretizations each edge is shared by one rect-
angle and one triangle. We expand the electric field in terms of linear edge elements [17,21] and they are
denoted by wj in the following. The magnetic field is expanded in piecewise constants denoted f j. (In what
follows, it is rather straight forward to replace wj and f j by the corresponding higher-order curl- and diver-
gence-conforming elements, should a higher-order method with respect to space be more desirable. A hierar-
chical basis [22] could be used if linear elements close to singularities are to be combined with higher order
elements elsewhere.) We use Galerkin’s method to derive the weak form
hwi; n̂�HiC þ ðr � wi;HÞX ¼ ðwi; rEEÞX þ
o

ot
ðwi; eEÞX ð2aÞ
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ðfi;r� EÞX ¼ �
o

ot
ðfi; lHÞX � ðfi; rMHÞX ð2bÞ
where ðu; vÞX ¼
R

X u � vdX and hu; viC ¼
H

Cu � vdC.

2.2. Time-stepping scheme

The temporal discretization is also based on FE techniques. This makes it feasible to generalize the pro-
posed method to problems that involve dispersive materials by means of the techniques described in Ref.
[20]. In the following, we denote the time-dependent coefficients ejðtÞ for the electric field and hjðtÞ for the mag-
netic field.

In the FE region with triangles, we choose ejðtÞ and hjðtÞ to be piecewise linear in time and let the temporal
degrees of freedom be associated with the grid points tðnÞ ¼ nDt of the integer mesh n ¼ 0; 1; 2; . . ., where n is
the time index and Dt is the time step. Thus, ejðtÞ and hjðtÞ are expanded in terms of the linear basis functions
lðnÞðtÞ. Fig. 1 shows a selection of the temporal basis and test functions. An implicit time-stepping scheme is
constructed for the FE region by means of piecewise constant cðnþ1=2ÞðtÞ test functions with respect to time for
(2a) and (2b). The test function cðnþ1=2ÞðtÞ is unity on the time interval nDt < t < ðnþ 1ÞDt and zero otherwise,
which yields a test function that is centered on the half mesh with respect to time. This procedure results in a
time-stepping scheme that provides unconditionally stable time-stepping for problems with both electric and
magnetic losses. For the special case without magnetic losses, it reduces to the conventional Newmark scheme
[19] with the implicitness parameter h ¼ 1=4.

For the remaining degrees of freedom, we choose ejðtÞ to be piecewise linear and centered on the integer
mesh in combination with hjðtÞ expanded in piecewise constant basis functions centered on the half mesh.
In the structured region, we use piecewise constant test functions cðnþ1=2ÞðtÞ for Ampère’s law (2a) and piece-
wise linear test functions lðnÞðtÞ for Faraday’s law (2b). The explicit leap-frog time-stepping method of the
FDTD scheme is recovered by trapezoidal integration for Faraday’s law (2b) and stable time-stepping is pos-
sible when the time step Dt fulfills the Courant condition of the FDTD scheme, see Refs. [2,23] for detailed
discussions on the stability of the FDTD scheme.
Implicit unconditionally stable scheme: piecewise linear expansion of ejðtÞ and hjðtÞ; and piecewise constant test functions for
e’s and Faraday’s law. Explicit leap-frog scheme: piecewise linear expansion of ejðtÞ and test function for Faraday’s law with

ral lumping; and piecewise constant expansion of hjðtÞ and test function for Ampère’s law.
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For spatial test functions wi and fi associated with the unstructured mesh of triangles, the field representa-
tion substituted into Ampère’s law (2a) and Faraday’s law (2b) yields the time-stepping scheme
Me þ Dt
2

BE � Dt
2

CT

Dt
2

C Ml þ Dt
2

BM

" #
xðnÞ ¼

Me � Dt
2

BE
Dt
2

CT

� Dt
2

C Ml � Dt
2

BM

" #
xðn�1Þ ð3Þ
where
ðCÞij ¼ ðfi;r� wjÞX ðBEÞij ¼ ðwi; rEwjÞX ðMeÞij ¼ ðwi; ewjÞX
ðBMÞij ¼ ðfi; rMfjÞX ðMlÞij ¼ ðfi; lfjÞX:
Here, xðnÞ is a vector with (i) all the degrees of freedom eðnÞj and hðnÞj associated with the unstructured triangles;
and (ii) the field represented by hðn�1=2Þ

j on the structured mesh of rectangles that feature when Ampère’s law
(1a) is tested by wi associated with edges shared by triangles and rectangles on the interface between the im-
plicit unstructured mesh and the explicit structured grid.

2.3. Stability for the FEM–FDTD interface

In this article, we demonstrate that our hybrid interface is stable when it is applied to material regions with
both electric and magnetic losses. For regions with a sufficiently large conductivity, the problem is stiff [24] and
it is advantageous to use the implicit time-stepping scheme associated with the FEM region rather than the
explicit FDTD scheme. The interface exploited in a vacuum region is identical to the stable FEM–FDTD
hybrid [14] for the implicitness parameter h ¼ 1=4. In this case, Belytschko and Mullen [16] show that the dis-
crete energy is bounded if the Courant condition of the explicit time-stepping scheme is fulfilled.

2.4. Analysis of the time-domain FEM with both electric and magnetic losses

The presence of magnetic losses makes the usage of conventional time-stepping schemes a challenge when
the second-order wave equation is considered. An attempt to address this issue in the literature can be found in
Ref. [5]. Here, we demonstrate some differences between our hybrid method and the scheme discussed in Ref.
[5]. Consider a problem with electric and magnetic losses, where the time-stepping scheme (3) is applied to the
entire computational domain. Let x denote an eigenmode with the growth factor q such that xðnÞ ¼ qnx, which
allows for von Neumann analysis at the frequency x when q ¼ expðjxDtÞ. The time-stepping scheme (3) with
xðnÞ ¼ qnx yields
q
Me þ Dt

2
BE � Dt

2
CT

Dt
2

C Ml þ Dt
2

BM

" #
x ¼

Me � Dt
2

BE
Dt
2

CT

� Dt
2

C Ml � Dt
2

BM

" #
x; ð4Þ
where the vector x contains the electromagnetic field (i.e. the electric field e and the magnetic field h) such that
its complex conjugate transpose is xH ¼ ½e H; hH�. We eliminate the magnetic field from the system (4) of Amp-
ère’s and Faraday’s law, which yields the Helmholtz equation for the electric field
CT Ml þ
qþ 1

q� 1

Dt
2

BM

� ��1

C
q2 þ 2qþ 1

4
e

� �
¼ �Me

q2 � 2qþ 1

ðDtÞ2
e

 !
� BE

q2 � 1

2Dt
e

� �
: ð5Þ
The term on the left-hand side in Eq. (5) corresponds to r� ½ðlþ rM=ðjxÞÞ�1r� Eðr;xÞ�, which can be illus-
trated by q ¼ expðjxDtÞ with xDt� 1 that yields
qþ 1

q� 1

Dt
2
¼ ð1þ jxDt þ � � �Þ þ 1

ð1þ jxDt þ � � �Þ � 1

Dt
2
’ 1

jx
:

For the left-hand side of Eq. (5), the product of the electric field and a frequency dependent material param-
eter (that may also depend on the space coordinate) implies that the corresponding time-domain wave equa-
tion includes a convolution. This aspect should be addressed if the second-order wave equation is targeted – an
approach that is attempted in Ref. [5]. We emphasize that the time-integration scheme (3) that we propose
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does not feature any convolutions, which we regard as a distinct advantage. Moreover, we avoid having to
deal with the curl of discontinuous functions that features in Ref. [5].

Finally, we rewrite Eq. (4) so that it reads
q� 1

Dt

Me 0

0 Ml

� �
e

h

� �
þ qþ 1

2

BE 0

0 BM

� �
e

h

� �
¼ qþ 1

2

0 CT

�C 0

" #
e

h

� �
: ð6Þ
Eq. (6) is multiplied from the left by xH ¼ ½eH; hH� and we get
2f
Dt

eHMeeþ hHMlh
� �

þ eHBEeþ hHBMh ¼ eHCTh� hHCe; ð7Þ
where f ¼ ðq� 1Þ=ðqþ 1Þ. Stability requires that jqj 6 1 for all modes, which is equivalent to Reffg 6 0 for
all modes. (Here, negative values for Reffg correspond to damped modes with jqj < 1.) We note that the
right-hand side of Eq. (7) is purely imaginary, since eHCTh� hHCe ¼ �2j ImfhHCeg. The matrices Me and
Ml are real, symmetric and positive definite. Furthermore, BE and BM are real, symmetric and semi-positive
definite. Thus, the real part of Eq. (7) yields
Reffg ¼ �Dt
2

eHBEeþ hHBMh

eHMeeþ hHMlh
6 0: ð8Þ
Consequently, the lossless case eHBEeþ hHBMh ¼ 0 yields Reffg ¼ 0 which corresponds to undamped modes
with jqj ¼ 1. For problems with electric and/or magnetic losses, we have eHBEeþ h HBMh P 0, i.e. Reffg < 0
for modes that are non-zero in the lossy region and such modes are damped since jqj < 1. This shows that the
time-stepping scheme (3) provides stable time-stepping for the case with both electric and magnetic losses. To
conclude, the time-stepping scheme (3) can be used for a standard time-domain FEM with unconditionally
stable time-stepping. In addition, it can be exploited in a hybrid setting (for more efficient computations) to-
gether with the FDTD scheme as described in this article.

3. Numerical results

In order to verify the accuracy and convergence properties of the hybrid method, we apply the method to
three different test problems. The first problem consists of a circular metal cylinder with a lossy coating. The
second problem is a homogeneous lossy circular cylinder. The RCS can be calculated analytically for both
these problems. The third problem is a metal airfoil with its leading edge covered by a lossy material. In
all problems, the scatterer is illuminated by a plane wave that is inserted at a Huygen’s surface [2]. The ampli-
tude of the incident wave is given by
EincðtÞ ¼ E0 exp �ðt � sÞ2

T 2

 !
sinðxcðt � sÞÞ; ð9Þ
i.e. a sinusoidal with the center frequency xc ¼ 2pfc that is amplitude modulated with a Gaussian. For the
frequency x, the Fourier transform of the time-domain fields gives the RCS in two dimensions as [25]
r ¼ lim
r!1

2pr
jE scðxÞj2

jEincðxÞj2
ð10Þ
where Esc is the scattered electric field and Einc is the incident plane wave. The incident plane wave propagates
in the direction k̂inc ¼ x̂ cos uinc þ ŷ sin uinc, where the angle of incidence uinc is measured counter clockwise
from the positive x-axis. A near-to-far field transformation [2] is used to compute the scattered field Esc for
observation points r ¼ r̂ðuscÞr ¼ x̂r cos usc þ ŷr sin usc far from the scatterer. In the far-field region, the electric
field is E scðr;uscÞ ¼ r�1=2 expð�jk0rÞFðuscÞ, where
FðuscÞ ¼
xl0 ejp=4ffiffiffiffiffiffiffiffiffiffi

8pk0

p
I

Ca

r̂ � r̂ � n̂�Hðr0Þ½ � � 1

g0

r̂ � ½n̂� Eðr0Þ�
� �

ejk0 r̂�r0 dC0
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is a scattering amplitude and Ca is the near-to-far field transformation surface. Here, the intrinsic impedance
of free space is g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
and the corresponding wave number is k0 ¼ x

ffiffiffiffiffiffiffiffiffi
l0e0
p

. We denote the unit normal
to the closed contour Ca by n̂.

Outside the near-to-far field transformation surface, the scattered field is absorbed by a perfectly matched
layer [2] (PML) enclosed in a PEC box. In the first and the second test problem, the PML is 16 cells thick and
in the third test problem the thickness is 12 cells, all specified on the coarsest grid. The physical thickness of the
PML is constant as the grids are refined. The conductivity profile of the PML is given by r ¼ rmaxðn=dÞ3:5,
where n is the perpendicular distance to the PML–air-interface and d is the thickness of the PML. We use
rmax ¼ 2:55� 10�2 S=m for the first and the second test problem and rmax ¼ 5:42� 10�1 S=m for the third
problem.

3.1. Test 1 – bistatic RCS for a coated PEC cylinder

First, consider scattering from a circular PEC cylinder with a lossy coating. The FEM–FDTD hybrid is
exploited to compute the time-domain response and the RCS is evaluated at the frequency fc ¼ 100 MHz.
The radius of the PEC cylinder is a ¼ 0:9kc, where kc is the free-space wavelength at the center frequency.
The thickness of the lossy coating is b� a ¼ 0:1kc, where b is the radius for the circular boundary between
the coating and the free space. The lossy coating is characterized by the material parameters er ¼ lr ¼ 3
and rE=e0 ¼ rM=l0 ¼ 2xc. This problem has an analytical solution and its RCS is given by
rTE ¼
4

k0

X1
n¼�1

J 0nðk0bÞ þ GTE
n J nðk0bÞ

H ð2Þ
0

n ðk0bÞ þ GTE
n H ð2Þn ðk0bÞ

ejnusc

					
					
2

rTM ¼
4

k0

X1
n¼�1

J 0nðk0bÞ þ GTM
n J nðk0bÞ

H ð2Þ
0

n ðk0bÞ þ GTM
n H ð2Þn ðk0bÞ

ejnusc

					
					
2

where
GTE
n ¼ �

ffiffiffiffiffi
lr

er

r
J 0nðk1bÞY 0nðk1aÞ � J 0nðk1aÞY 0nðk1bÞ
J nðk1bÞY 0nðk1aÞ � J 0nðk1aÞY nðk1bÞ

GTM
n ¼ �

ffiffiffiffiffi
er

lr

r
J nðk1aÞY 0nðk1bÞ � J 0nðk1bÞY nðk1aÞ
J nðk1aÞY nðk1bÞ � J nðk1bÞY nðk1aÞ
and k1 is the wave number in the lossy coating. Wang [26] published analytical results for the case when lr ¼ 1.
The FEM–FDTD hybrid is used to compute the bistatic RCS of the circular cylinder when it is illuminated

by a plane wave temporally described by the amplitude (9) with T ¼
ffiffiffi
2
p

=ð30p� 106Þ s and s ¼ 4T . Fig. 2
shows the relative error kr� r�k=kr�k as a function of resolution for the TE polarization by the solid curve
and TM polarization by the dashed curve, where r is the computed RCS and r� is the analytical RCS. Here,
we use the norm k � k ¼ ½

R 2p
0
ð�Þ2 dusc�

1=2. The computation was performed for the resolutions kc=h ¼ 8, 16, 32,
64 and 96, where the time step is Dt ¼ h=ð

ffiffiffi
2
p

c0Þ, and the FDTD cell size is denoted h. (The triangular mesh has
a typical cell size that is somewhat smaller than h and we use a hierarchical refinement as the resolution is
increased.) The solution to this field problem is regular and we achieve second-order convergence with respect
to the cell size as expected for a numerical scheme based on a linear field approximation. An accuracy of 2% is
achieved for about 20 points per wavelength.

3.2. Test 2 – bistatic RCS for a homogeneous lossy cylinder

The second test case consists of a homogeneous lossy circular cylinder. The radius of the cylinder is kc and
the material parameters are er ¼ lr ¼ 2 and rE=e0 ¼ rM=l0 ¼ 0:1xc. As for the first test case, this scattering
problem can be solved analytically and, again, we perform a convergence study.

Here, we discretize a thin layer in the vicinity of the circular boundary by the FEM. Thus, the main part of
the cylinder’s interior with the homogeneous lossy material is discretized by the FDTD scheme and can be
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Fig. 2. The relative error in the bistatic RCS as a function of resolution for a circular cylinder with a lossy coating: TE polarization – solid
curve and TM polarization – dashed curve.
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updated explicitly. Consequently, this test problem has two hybrid FEM–FDTD interfaces: (i) the interface in
the vacuum region; and (ii) the interface inside the lossy cylinder.

Fig. 3 shows the relative error kr� r�k=kr�k as a function of resolution for the TE polarization, where the
general setup for the FEM–FDTD computation is the same as in the first test case. The computation was per-
formed for the resolutions kc=h ¼ 16; 32 and 64 . We emphasize that the hybrid computation is stable and that
we achieve second-order convergence with respect to the cell size towards the analytical solution.

3.3. Test 3 – monostatic RCS for an airfoil

The third test case deals with scattering from the airfoil depicted in Fig. 4, where the illuminating plane
wave is temporally described by the amplitude (9) with fc ¼ 850 MHz, T ¼

ffiffiffi
2
p

=ð250p� 106Þ s and s ¼ 4T .
The airfoil consists of a PEC core with a RAM placed on its leading edge. The absorbing material is charac-
10
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10
2

10
−3

10
−2

10
−1

Fig. 3. The relative error in the bistatic RCS as a function of resolution for a homogeneous lossy circular cylinder; TE polarization.
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Fig. 4. The geometry of the airfoil that consists of a PEC structure with a RAM placed on its leading edge.
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terized by the parameters er ¼ 2:13, lr ¼ 4:14, rE=e0 ¼ 2:14xc and rM=l0 ¼ 0:73xc. These material parameters
and the shape of the PEC-RAM boundary are optimized [27] to achieve a low RCS for �20� < uinc < 20� and
600 MHz < f < 1100 MHz. The geometry of the wing is described by Bézier curves [28]. The wing is symmet-
ric with respect to y ¼ 0 and the three Bézier curves that are used to describe the shape in the region y < 0 have
the control points ci shown in Table 1.

Fig. 5 shows the monostatic RCS for the TM polarization as a function of the incident angle uinc for three
different frequencies: 600 MHz-solid curve; 850 MHz-dashed curve and 1100 MHz – dash-dotted curve. The
corresponding results for the TE case are shown in Fig. 6. The monostatic RCS requires that usc ¼ uinc þ p
and in the following we use u ¼ uinc. Here, the scattering amplitude F is computed on a grid with
h ¼ kc=60 for a set of M þ 1 incident angles ui ¼ iDu, where i ¼ 0; 1; . . . ;M and Du ¼ p=M . The computed
FðuiÞ is then interpolated by a Fourier series.
Table 1
Control points for the Bézier curves that are used for the geometrical description of the airfoil

Curve 1 Curve 2 Curve 3

(1.0000,0) (0.20617,�0.042504) (0.20617,�0.042504)
(0.82896,�0.018792) (0.12904,�0.038207) (0.23675,0.0083209)
(0.602660.064594) (0.071682,�0.028602) (0.17220,�0.048014)
(0.20617,�0.042504) (0,�0.034171) (0.13631,�0.029701)

(0,0) (0.15374,�0.0026923)
(0.044322,�0.015023)
(0.044322,0)
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Fig. 5. Monostatic RCS r for the TM polarization as a function of the incident angle u: 600 MHz – solid curve; 850 MHz – dashed curve
and 1100 MHz – dash-dotted curve.
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Fig. 6. Monostatic RCS r for the TE polarization as a function of the incident angle u: 600 MHz – solid curve; 850 MHz – dashed curve
and 1100 MHz – dash-dotted curve.
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The airfoil features sharp material corners and we expect a singular field solution at these points. In order
to investigate the convergence properties of the FEM–FDTD hybrid algorithm, we performed computations
with a number of different FDTD grids with h ¼ h0=nh, where h0 ¼ kc=20 and nh ¼ 1; 2; . . . ; 7. Analogously,
the FEM mesh of triangles is refined in a hierarchical manner. The trailing edge of the wing is a PEC corner
in a homogeneous region, where e ¼ e0 and l ¼ l0. The PEC corner subtends an angle b ¼ 0:2189 and an ana-
lytical treatment [29] yields that the scattering amplitude converge, to the lowest order, as FðhÞ ¼ F0 þ Faha,
where a ¼ ð1� b=ð2pÞÞ�1 ¼ 1:036 is the order of convergence. Here, F0 denotes the extrapolated result and,
for a given a, it can be estimated (together with the coefficients Fa) by a least square fit to the amplitudes Fh

computed by the FEM–FDTD hybrid with cell size h. Fig. 7 shows the error eðaÞ ¼
P

hkFðhÞ � Fhk2 as a func-
tion of a for different sets of resolution in the case of the TM polarization. The lowest error is achieved for
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Fig. 7. Fit of the error eðaÞ ¼
P

hkFðhÞ � Fhk2 as a function of the exponent a in the extrapolation model FðhÞ ¼ F0 þ Faha, where F0 and
Fa are computed by a least square fit. Here, Fh denotes the result computed by the FEM–FDTD hybrid for the cell size h and the error is
shown for different resolutions k=h included in the error sum.
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Fig. 8. Convergence of the monostatic RCS r for TM polarization with respect to the cell size h for different angles of incidence u:
computed results – circles; fit for extrapolation – solid curves.
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a ¼ 1:01 when 80 6 k=h 6 140. This order of convergence is within 3% from the expected a ¼ 1:036. A fit that
also includes scattering amplitudes computed at lower resolutions yields a larger error and larger values for its
minimum with respect to a, which is expected since the dispersion error that scales as h2 (and higher-order
terms) becomes more dominant on coarser grids. A similar study based on the extrapolation model
FðhÞ ¼ F0 þ Faha þ Fbhb with a ¼ 1:01 fixed gives rather flat error curves with respect to b, where a shallow
minimum can be found around b ¼ 2:09 for 20 6 k=h 6 140 and b ¼ 2:02 for 80 6 k=h 6 140. We conclude
that the model FðhÞ ¼ F0 þ Faha with a ¼ 1:01 fixed gives a good fit and extend this with a term F2h2 that
captures the dispersion errors. In principle, the two points where the RAM, the PEC and the air region join
also support singularities [30] but the amplitudes for such error terms appear to be small in this context given
the computed results. The same conclusion is reached for the TE case.

Fig. 8 shows the RCS for the TM case with respect to h for the angles u ¼ 0�; 10�; 20�; 45�; 110� and 175�,
where the computed results are shown by circles and the fitted extrapolation models are shown by solid curves.
It is noticed that for some angles such as u ¼ 20�, the RCS is relatively sensitive to the discretization errors
and it varies substantially as the resolution is increased.

Given the extrapolated results r0, we study the deviation Dr ¼ 10log10ðr=r0Þ for the computed results r as
a function of u. For the frequency 850 MHz, the deviation is less than 1 dB for at least 90% of the azimuths at
the coarsest grid and the large deviations coincide with deep minima in the RCS. We tentatively estimate the
error in our extrapolated results to be less than 0.1 dB, except for azimuth angles that correspond to very deep
minima in the RCS.
4. Conclusions

We have presented a stable FEM–FDTD hybrid in two dimensions that allows for both electric and mag-
netic losses. For the transverse electric (TE) case, the electric field is expanded in linear edge elements on the
computational domain, and the magnetic field is expressed in terms of piecewise constant basis functions. The
transverse magnetic (TM) case follows from duality. The computational domain is divided in two parts: (i)
homogeneous space discretized by a structured grid of rectangles; and (ii) the remaining regions in the vicinity
of curved boundaries discretized by an unstructured mesh of triangles. For the FEM region, an uncondition-
ally stable implicit time-stepping scheme is used. The global time-step is limited by the Courant condition for
the explicit FDTD scheme on the structured grid. The FEM–FDTD interface is constructed as to ensure
stability.
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The scheme is tested on three scattering problems. In the first problem, we compute the bistatic radar cross
section (RCS) for a circular metal cylinder with a lossy coating. For both the TE and TM polarization, the
bistatic RCS shows second-order convergence to the analytical solution with respect to cell size, and a reso-
lution of about 20 points per wavelength yields a relative error below 2%. The second problem consists of a
homogeneous lossy circular cylinder, where an annular layer in the vicinity of the circular boundary is treated
by the FEM and the homogeneous regions exterior and interior to the annular FEM region are treated by the
FDTD scheme. The bistatic RCS is computed for the TE polarization and it shows second-order convergence
to the analytical solution with respect to cell size. The third problem deals with scattering from an airfoil with
an absorbing material on its leading edge. Bézier curves are used to describe the geometry of the scatterer. The
Fourier spectrum of the monostatic RCS with respect to the incident angle demonstrates that the scattered
field can be represented by a limited number of Fourier modes. Hence, a suitable interpolation model with
respect to the azimuth angle is constructed by means of a Fourier series. An extrapolation model for the
numerical error yields an order of convergence that agrees well with what is expected given the field singular-
ities at sharp corners and dispersion errors. The deviation in the computed RCS from the extrapolated results
is less than 1 dB for at least 90 % of the incident angles for a resolution as low as 20 points per wavelength. The
detailed geometry description and accurate results presented in this article makes this test case an appropriate
reference problem for 2D RCS codes that model both electric and magnetic losses. We conclude that the stable
FEM–FDTD hybrid is robust and yields accurate results.
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